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Particle velocity autocorrelations of single spherical beads (46.5 p hollow glass, 
87p glass, 87p corn pollen, and 46.5,~ copper) were measured in a grid-generated 
turbulence. The hollow glass beads were small and light enough to behave like 
fluid points; the other types had significant inertia and ‘crossing trajectories’ 
effects. The autocorrelations decreased much fasker for heavier particles, in 
contradiction to previous experimental results. The integral scale for the copper 
beads was Q of that for the hollow glass beads. The particle velocity correlations 
and the Eulerian spatial correlation were coincident within experimental error 
when the separation was non-dimensionalized by the respective integral scale. 
The data generated by the hollow glass beads can be used to estimate Lagrangian 
fluid properities. The Lagrangian time integral scale is approximated by L/u’, 
where L is the Eulerian integral scale and u’ is the turbulence intensity. 

1. Introduction 
In  order to predict the spread of aerosols and other foreign particulate matter 

by a turbulent flow, a knowledge is required of the statistics of the motion of 
small particles in response to the turbulenk fluctuations of velocity. (A distinction 
is made here between a ‘particle’, a solid, rigid piece of matter immersed in the 
continuum, and a ‘fluid poink’, a mathematical poinb moving with the 
continuum.) One could not hope to predict, nor would one want to predict, the 
position of each particle ak every instant of time in a turbulent flow. What is 
desired are predictions of the quantities characteristic of the ensemble of particle 
paths from a distribution of properties of an ensemble of realizations of turbulent 
flows. As an example, consider the spreading of smoke from a smokestack in the 
atmosphere. One would like to be able to predict, from the Eulerian properties 
of the flow field, the concentration of smoke downwind of the stack. 

So-called K-theories are commonly used to estimate dispersion. They postulate 
that the flux is proportioned to the gradient of concentration, in analogy with 
molecular diffusion. Since the diffusing mechanism is of the same scale as the 
property being diffused, the K-theories are fundamentally incorrect and have 
no real value in the physical sense (Tennekes & Lumley 197 1). 

A fundamentally correct theory of turbulent dispersion of fluid points is that 
of Taylor (1921), who initiaked the theory ‘diffusion by continuous movements’. 
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The reason this theory has not been put to common use is that it is formulated in 
terms of Lagrangian rather than the much more easily measured Eulerian vari- 
ables. Taylor’s Cheory reduces the dispersion problem to that of determining the 
Lagrangian autocorrelation function. (Hereafter, the word ‘ Lagrangian ’ will be 
used in its strictest sense, to denote a set of co-ordinates in which each fluid point 
is fixed. A set of co-ordinates in which a foreign particle is fixed will be denoted 
by ‘particle ’, e.g. particle velocity autocorrelation function.) 

As originally stated, Taylor’s theory applies only to a homogeneous flow and 
predicts the dispersion of fluid points rather than of foreign particles. The modifi- 
cation of the theory to make it applicable to  particles is straightforward; the 
modifications required to make it applicable to non-homogeneous flows are not 
straightforward, but, in many cases, non-homogeneity may be taken into 
account (Monin & Yaglom 1965; Batchelor 1957). 

A myriad of theories on dispersion of fluid points has been presented. Sutton 
(1947), for example, derived a practical set of expressions for the dispersion of 
fluid points in the atmosphere by making certain assumptions on the nature of 
the autocorrelation function. His equations contain constants which must be 
chosen empirically in accordance with certain gross features of the dispersing 
flow; they do not accurately predict the dispersion in most cases. It must be 
recognized that the dispersion of fluid points is a special case of the particle 
dispersion problem, and, as such, none of these theories accounts for the lack of 
coincidence between paths of particles and those of fluid points. 

Tchen (1947), Lumley (1957), and others have attempted to predict dispersion 
from the dynamical equation describing the motion of particles. Lumley (1 957) 
and Corrsin & Lumley (1956) have pointed lout errors in the earlier analyses 
which make their results somewhat uncertain. Lumley concluded that the 
problem can be resolved only on the level of functional probabilities. In  essence, 
he says that, in order to predict the probability of a particle travelling from one 
point to another, one must integrate, in function space, over all possible paths 
between two points, the probability of the particle taking the path. The theory 
of functions and function spaces is simply not yet developed to a point where 
such a calculation could be carried out, although elementary steps have been 
made (Lumley & Corrsin 1959; Lumley 1960; Patterson & Corrsin 1966). 

Many experiments of the pure Lagrangian type have been performed. These 
experiments consisted of ‘tagging’ fluid points, either through a hot wire 
stretched across the flow field or through releasing a foreign gas, and measuring 
the distribution of tagged particles at  intervals downstream from the source, the 
flow field being either the core of a fully developed pipe flow or the lee of an array 
of bars. Two uncertainties resulted from these experiments: (i) the effects of 
turbulent dispersion and molecular diffusion were not easily separated, and 
(ii) since tagged fluid points could not be followed individually, the autocorrela- 
tion functions, if obtained, were found through the questionable step of doubly- 
differentiating the second moment of the distributions. 

Concerning the first problem, Taylor (1935) pointed out that molecular 
diffusion and turbulent dispersion are statistically independent, so that the 
variances due to these two effects are additive. Townsend (1954), and Batchelor 
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& Townsend (1956), however, showed that the two effects are synergistic. Later, 
Saffman (1960, 1961) pointed out a fallacy in their argument. He and Okubo 
(1967) have shown that the interaction reduces the dispersion relative to the 
origin from the value it would have had if the two processes had been independent 
and additive. (They also showed that the interaction increases the dispersion 
relative to the centroid of the diffusing patch.) Saffman claimed that his pre- 
dictions werein qualitative agreement with the measurements of Mickelsen (1  960), 
but both Saffmaii and Mickelsen suggested that further experimentation was 
needed to resolve this problem for large times. Concerning the  second problem, 
graphical differentiation is always difficult, but the double-differentiation of an 
empirical curve, even one in which the scatter of the data is seemingly small, 
can give results which vary widely from one analyst to another. It appears that 
Kennedy’s (1965) double-differentiation may have led him to incorrect con- 
clusions about his results (see later comments). 

Three laboratory investigations of the dispersion of particles deserve comment. 
Vanoni & Brooks (1955) injected neutrally buoyant fluid particles into the grid- 
generated turbulence of a water tunnel. They were the first to make measure- 
ments of successive displacements of particles and compute the ‘Lagrangian’ 
autocorrelation function directly from the decay-corrected velocity data. How- 
ever, there are some problems with their data: (i) they reported difficulties with 
the injector strut inducing large disturbances into the flow, (ii) the sample size 
was very small (the largest number of trajectories in any one run was 34); 
(iii) turbulent intensities were not directly measured, but were inferred from the 
particle motion, and (iv) their data were partially but not completely decay- 
corrected. 

Frenzen (1963) improved upon the work of Vanoni & Brooks, and extended the 
problem to include stably, unstably, and neutrally stratified flows. He photo- 
graphed successive displacements of neutrally buoyant one millimetre droplets 
of nitrobenzene and olive oil in the grid-produced turbulence in a towing tank 
(water). He also encountered some problems: (if the sample size was quite small 
(the largest number of trajectories was 50), (ii) turbulence intensities were 
inferred from particle motions, (iii) the mean flow and departures from homo- 
geneous turbulence decay were found to be significant (he discussed these a t  
length), and (iv) according to Shirazi, Chao & Jones (1967), he used an unusually 
high digital filtiering which cut out perhaps as much as 50 yo of the turbulent 
energy. (This is in rough agreement with the criteria developed for the sampling 
rate in $3.)  

Kennedy (1965) measured the dispersion of heat, 1250p soap bubbles, and 
700p and 9OOp polystyrene beads in the grid-generated turbulence of a vertical 
wind tunnel. Comparisons with his data are difficult for several reasons: (i) his 
measured turbulence intensities were found to be abnormally low (see later dis- 
cussion), (ii) his measured Eulerian spectral energy data were found to be incon- 
sistentr by Shirazi, Chao & Jones (1967), and (iii) his double-differentiation of the 
dispersion curves is questionable (see later discussion). Also, Kennedy did not 
measure particle velocities directly, but inferred them from the initial slope of 
the dispersion curve. 
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To bhe authors’ knowledge, the three experiments described immediately 
above are the only ones in which the decay-corrected particle velocity auto- 
correlation function was computed from successive displacements of individual 
particles dispersing in a homogeneous, decaying field of turbulence. 

Yudine (1959) discussed the physical behaviour of heavy particles with large 
terminal velocities. He stated that the process of dispersion depends upon the 
terminal velocity in three ways: (i) The terminal velocity determines the vertical 
displacement of the centre of dispersion of the particles. This effect is easily 
accounted for by introducing a convective term into the diffusion equation 
(Pasquill 1962). (ii) The terminal velocity is a measure of the inertia. Because of 
this, the particles do not completely follow the high frequency fluctuations of the 
turbulence. He claims this inertia effect is insignificant for diffusion times much 
larger than the particle time constant. (iii) If it has appreciable terminal velocity, 
it particle will fall from one eddy to another, whereas a fluid point would remain 
in the same eddy throughout the lifetime of the eddy. He has called this the 
‘ crossing-trajectories effect ’. 

Csanady (1963) showed the inertia effect to be negligible but the crossing- 
trajectories effect and a consequential ‘ continuity effect ’ to be appreciable in the 
atmosphere. The ‘ continuity effect ’ arises in order to accommodate the  ‘back- 
flow’ necessary to satisfy continuity. It results in correlations containing con- 
siderable negative loops, and, according to Csanady’s estimates for the atmo- 
sphere, may reduce the effective lateral diffusivity by as much as a factor of four 
(as compared to the diffusion of a gaseous cloud). In  an attempt to experimentally 
verify this estimate, Csanady (1964) found that the lateral diffusion was reduced, 
but that more careful experimental work was needed for a full appreciation of 
this effect. Csanady (1967) related the particle velocity correlation to the Eulerian 
spatial correlation taken along a vertical straight line representing the mean 
particle path. This analysis included the crossing-trajectories effect and ignored 
the particle inertia. 

It is seen that very little is known about the particle velocity autocorrelation 
function, or, its limiting case, the Lagrsngian autocorrelation function. No com- 
pletely satisfactory theory exists nor have any completely satisfactory experi- 
mental data been generated. Previous experiments have failed to produce 
completely satisfactory data for numerous reasons, which were detailed previ- 
ously. The specific goal of this work was to generate the datla to allow conclusions 
to be drawn about the particle velocity autocorrelations. This involves (a) a range 
of particle parameters, but a t  least one particle type small and light enough to 
be considered a fluid point and one large and heavy enough to have significant 
inertia and crossing-trajectories effects, ( b )  following individual particle trajec- 
tories so as to avoid the questionable double-differentiation, (c) measurement of 
a sufficiently large number of particle trajectories to form statistically significant 
averages, ( d )  taking samples of particle velocities often enough so as not to ignore 
the small-scale motions, ( e )  having an observation time long enough to measure 
the full range of variation of the autocorrelation functions, (f) measurement of 
the Eulerian properties of the flow field, and, finally, (9)  application of corrections 
to account for homogeneous decay of the turbulent flow field. 
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2. Theoretical considerations 

point displacement in a stationary homogeneous turbulence is given by 
Taylor's (1921) theory is well known. He showed that the mean-square fluid 

where the square brackets denote ensemble averages, 

the autocorrelation function, and v is the fluctuating velocity following a fluid 
point. He also showed that 

[ Y 2 ( t ) ]  = [v2]t2, for t 4 T~ 
and [Y2(t)]  = 2[vz]TT,t, for t TLt 

where T~ is the Lagrangian Taylor microscale, and 

is the Lagrangian integral scale. 
The equations are equally applicable for the dispersion of alien particles, 

provided that the velocities are interpreted as particle velocities, and that the 
Lagrangian time scales are interpreted accordingly. The problem with applying 
the Taylor equation is that the shape of the autocorrelation function (or, even 
the integral or microscales) is unknown. 

Equation (1) can be doubly differentiated to obtain 

This equation, then, was the basis for several previous experiments, as discussed 
in the introduction. The present experiment measures the autocorrelation func- 
tion directly; i.e. by measuring particle velocities and taking lagged products, as 
in equation ( 2 ) .  

3. The design of the experiment 
3.1. Choice of $ow 

Ideally, the starting point for the experiment would have been in a stationary 
and homogeneous turbulence. No such flow exists in nature, since homogeneous 
flows must be non-stationary, and stationary flows must be non-homogeneous. 
As indicated by previous experiments, the types of suitable flows are extremely 
limited. 

A stationary grid flow was chosen because it is easy to construct, it has a flat 
mean velocity profile, and corrections can be made to account for the inhomo- 
geneity. The tunnel was made the same size and speed as Kennedy's so that 
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direct comparisons could be made; i.e. 20ft/sec air flow with a 1 in. grid, giving 
a grid Reynolds number of approximately 10 000. Since the decay corrections 
(see next section) could be made only in the initial period of decay, the test 
section was limited to left in length. A crude estimate indicated that 99 %‘of 
the particles would diffuse no more than 3 in. from the centreline, so that a 16 in. 
square test section was adequate. 

The particle with the highest terminal vebocity was the 46.5,~ copper bead, 
with an Oseen velocity of approximately 1-5ftfsec. Since this particle was to 
spend about one second in the tunnel, during its trip through the test section, 
the particle would fall about 1.5 feet relative to the flow. Hence, it was necessary 
to place the test section vertically, with the flow upward. This had the slight 
additional advantage that the particle would spend a little more time in the 
initial period of decay. 

3.2. Analysis of decay 

During the initial period of decay the turbulence intensity changes by a factor 
of $ (Batchelor 1956), so that the turbulence in this region may not be regarded 
as homogeneous. This change, as seen by a fluid point, is rather slow, so that the 
grid flow is sometimes called a homogeneous, decaying turbulence, whereas it is 
obviously a non-homogeneous but stationary field. This effect is negligible for 
short time lags, although one might expect to see a difference between short lag 
correlations determined at various positions down the tunnel, For long lags, this 
effect is definitely important. Fortunately, there is evidence to suggest that 
during this phase of decay, the turbulence may be regarded as largely identical 
in structure with simple changes in length and velocity scales. An extension of 
these ideas to the particle and Lagrangian cases implies a simple change in time 
scale proportional to distance (or time) from the virtual origin of decay. With this 
co-ordinate stretching, the bias introduced by measuring the correlations in 
a mildly inhomogeneous turbulence, rather than a truly homogeneous one, can 
be removed. The following analysis was originally introduced by Taylor (1 935) 
(from a somewhat different viewpoint), modified by Batchelor (1952), and shown 
to be sufficient to the task by Frenzen (1963). Batchelor used the concept in the 
analysis of diffusion in a decaying turbulence. Frenzen showed thah measure- 
ments made in a homogeneous decaying field could be adjusted in such a way 
that data approximating the characteristics of a stationary one would result. It 
will be shown here that measurements made in a stationary, non-homogeneous 
field can be adjusted in such a way that data approximating the characteristics 
of a homogeneous one will result. (A transformation of x = Ut makes this analysis 
identical to that of Frenzen.) 

During the initial period, the turbulent energy follows the inverse linear decay 
law, d2 cc (x - x,,)-l, where x is the distance from the grid and x,, is the location of 
the virtual origin of decay. In  actuality, careful investigations have shown that 
this is not strictly true, but from a practical viewpoint, this law is sufficient; 
indeed, in order to make any correction at  all, the assumption of an inverse linear 
law is a necessity. The prediction of this law requires the assumptions that the 
transfer and dissipative terms are equally important and that the spectra are 
self-preserving at  all distances from the virtual origin (Lin 1961). 
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Also, any characteristic length scale of the turbulence (say L,, tihe Eulerian 
integral length scale) increases as (z - xo)*. A time scale T* characteristic of the 
decaying eddies can be defined from a velocity scale V* and a length scale L* of 
the turbulence. Hence, 

L” (x-x )3 
v* (x-xo)-9 

T* = -x - - x-xo, or T*xx-x,. ( 5 )  

It thus becomes possible to apply suitable scale factors in such a way that the 
shifting but self-preserving spectral distributions characteristic of successively 
larger downstream distances are continuously corrected to a homogeneous state 
approximately representative of the uncorrected field at  any arbitrary position. 
The position was chosen for convenience in this investigation to be x/M = 73; 
it is nearly half-way between the first two camera locations and was a position 
where turbulence measurements were made. The correction was made by: 
(i) Compensating for velocity decay by dividing observed velocity fluctuations 
by the root-mean-squa,re fluctuation observed at  that point. This is equivalent 
to  Frenzen’s multiplying by the square root of the time of observation. (ii) Com- 
pensating for increasing length scale by dividing separations used in the experi- 
ment by their central location. 

As a consequence of (ii), a consecutive series of infinitesimal, normalized length 
intervals d(x - xo)/(x - xo) becomes a new corrected length interval when inte- 
grated over a real distance in the experiment, i.e. 

The constant A can be adjusted so that 5 will match the length scale measured 
at  x / N  = 73. From the point of view of the particle, correlation separations 
should be measured in time rather than in space, so that, in actuality, the 
constant A was adjusted so that 6 would match the time scale measured at  
x / M  = 73. With this new definition of 6 as a time scale, the normalized auto- 
correlation function becomes: 

pzz(.$) is the normalized autocorrelation of lateral particle velocities measured in 
a stationary, homogeneous turbulence field possessing characteristics of the 
grid-generated flow at x / M  = 73. 

3.3. Particles 

There are two relevant parameters in this investigation. The first is the ratio of 
the particle time constant, given by Tp = u,/g, to the smallest time scale of the 
motion, which is t ,  = (v/e)&. The second is the ratio of the particle diameter, D, 
t o  the smallesb length scale of the motion, which is q = (v3/e)*, the Kolmogorofl 
microscale. The particle terminal velocity is u,, g is acceleration due to gravi6yy, 
v is the kinematic viscosity, and 6 is the rate of dissipation. Based on Kennedy’s 
results, ib was reasoned that particle parameters covering the range of two orders 
of magnitude below unity would provide all the information desired; i.e. that this 
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range would permit extrapolation to zero time constant, or, equivalently, that 
these particles would behave much like fluid points. All particles below 100 ,~  
were less than a tenth of the smallest length scale, so that the time-scale ratio was 
expected to be the primary variable of interest. In  order to investigate the effect 
of each of the particle parameters independently, two particles with the same 
time-scale ratio but different length-scale ratios and two with the same length- 
scale ratio, but different time-scale ratios were chosen. This required three particle 
types. A fourth particle, which had as small a time-scale ratio as was possible to 
work with, was added. 

The particles used in this investigation were chosen on the basis of the above 
considerations and also on the basis of their availability, low cost, sphericity, 
uniformity of shape, ease of sieving, ease of injecting, and reflectivity. Table 1 
lists the particles along with relevant parameters. It is to be noted that the 
definition of the particle time constant is not identical to that given by Lumley 
(1957). His definition is Tp = D2( 1 + (2pp /p ) ) /36v ,  which conforms to the definition 
Tp = uTlg if the particle obeys Stokes flow. As can be seen from table 1, only one 
particle had a Reynolds number less than one-half and hence obeyed Stokes flow. 
The definition used here is a better physical measure of the particle time constant, 
i.e. the time required for a particle subjected to a step change in velocity to reach 
63 yo of its final velocity. The terminal velocities were estimated by a method 
recommended by Fuchs (1964). 

Diameter ( p )  
Density (g/cc) 
Time constant (msec)(a) 
Time scale ratioCb’ 
Length scale ratio(C) 
Stokes velocity (cm/sec) 
Terminal velocity (cm/sec)(d’ 
Reynolds number 

Hollow 
glass 

46.5 
0.26 
1.7 
0,145 
0.105 
1.67 
1.67 
0.05 

Solid 
glass 

87.0 
2.5 
45.0 
3.85 
0.198 
56-2 
44.2 
2.48 

Corn Copper 

87.0 46.5 
1.0 8.9 
20.0 49.0 
1.72 4.21 
0.198 0.105 
22.5 57.0 
19.8 48.3 
1.10 1.45 

(a),  based on terminal velocity; ( b ) ,  the fluid time scale is 11.6 msec at z / M  = 73; 
(c) the Kolomogoroff microscale is 0.043 cm at x/d!i‘ = 73; (d) computed from table 5 in 
Fuchs (1964, p. 32). 

TABLE 1. Particles and relevant parameters 

It is to be noted from table 1 that the particle parameters are not two orders of 
magnitude below unity, as was desired. Based on Kennedy’s (1965) estimates of 
the smallest turbulence time and length scales, the parameters would have been 
nearly two orders of magnitude below unity, but Kennedy’s turbulence intensities 
and hence his dissipation were found to be abnormally small, making his smallest 
time and length scales abnormally large. The particle time constants used in this 
experiment are smaller than the solid particles used by Kennedy by a factor of 
three, and the time constant of the hollow glass beads is smaller Chan that of 
Kennedy’s soap bubbles by a factor of six. The diameters are smaller by more 
than an order of magnitude. 
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Lumley & Snyder (1968) made a calculation showing that, for less than a 5 yo 
error in the autocorrelation function, the small beads could vary by & 9 p  and the 
large ones by f 16p. However, if the large particles varied by more than about 
3 % in diameter, their terminal velocity would change enough so that they would 
no longer be within the field of view of the last camera. Of the several techniques 
tried for obtaining the narrow size range of particles, sieving was found to yield 
the best results. The guaranteed tolerance of Che precision micromesh sieves 
was f 2p .  The nominally 46.5 ,~  beads were sieved through 45p  and 48p  sieves, 
so that theoretically the absolute range of particle sizes was 43p  to 50p. The 87p 
glass beads were sieved through 84p and 9Op sieves. Sieving was found to be 
quite adequate, as evidenced by microscopic examination and by the fact thab 
very few particles wen6 out of the field of view of the last camera. 

3.4. Number of measurements required 
It is necessary to determine what number of particle trajectories is required for 
a specified accuracy in the measurement of the autocorrelation, or, said another 
way, to  determine the likely error in the estimation of the autocorrelation from 
a non-infinite set of samples. If a number of independent measurements of the 
correlation of a Gaussian process are made, the mean-square relative error can 
be represented as €5 = (1 + l/p2)/N, where eR is the relative error, p is the auto- 
correlation, and N is the number of measurements (Lumley & Panofsky 1964). 
Since Che turbulence is very nearly Gaussian in many respects, this equation is 
very likely a reasonable estimate of the errors involved. For very small separa- 
tions, the correlation is approximately unity, so that the number of runs required 
for less than 10 yo error is about 200. For large separations, the correlation may 
be approximated by p = e-+JTL, and for separations of the order of the integral 
time scale, 700 measurements are required for 10% accuracy. This accuracy 
is that relative to the value being measured; at  large separations, this represents 
a very small percentage of the value at zero separation. For a 1 % error, 
70000 measurements would be required, which is clearly beyond reason. Hence, 
it was decided to take 700 measurements at  each separation and acceph a possible 
10% error in the determination of the autocorrelation a6 large separations. 
These figures are in very close agreement wihh the experimental findings of 
Kennedy (1965), who made between 150 and 700 measurements, depending upon 
separation, to obtain stable averages. 

3.5. Sampling rate and observation time 
It is necessary to determine how frequently particle photographs need to be 
taken. If taken too infrequently, the mean particle velocity between frames will 
bear no relation to the velocity at  the centre of the interval. If taken too 
frequently, unnecessary time and expense are incurred. The optimum sampling 
rate is hereby determined. 

Moving with the mean velocity in a turbulent flow, there is negligible energy 
at frequencies above roughly & ( E / v ) ~ .  This is a consequence of Kolmogoroff’s 
theories applied to the Eulerian time spectrum (Corrsin 1963a, Inoue 1951). In  
essence, dimensional analysis shows that S(w) = amr2 in the inertial subrange, 
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where S is the one-dimensional energy spectrum function (temporal), E is the 
dissipation, w is the frequency, and a is a universal constant. The peak of the 
dissipation spectrum occurs a t  K / K ~  - 9,  where K is the wave-number, and K~ is 
the Kolmogoroff wave-number. In the absence of other information, it is perhaps 
not unreasonable to suppose that the cut-off in the second moment of the time 
spectrum will occur somewhere near w/wo N 9, where wo is the Kolmogoroff 
frequency, wo = (E/Y)*. On the basis of Kolmogoroff scaling, there is no reason to 
expect a difference between the Eulerian arid Lagrangian time spectra. The 
Kolmogoroff frequency is therefore the Nyquist frequency. If a particle followed 
the turbulence perfectly, sampling at  this rate would give all necessary informa- 
t'ion about the motion. I n  Kennedy's flow, this was 2000/((x/M) - 10) Hz. 
Sampling a t  this rate, the number of measuring stations required between x,/M 
and x,/M is roughly 
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Since measurements were begun at 60 mesh length and stopped at  180 (the initial 
period of decay), this required 10 samples, taken progressively farther apart. It 
should be noted that this method of sampling corresponds to sampling at  equal 
separations of the corrected time scale, defined by equation (6) or (7), provided 
the virtual origin of the particle energy is the same as that of the turbulence. 
Since this was found to be the case, the effective number of runs for short lag 
correlations was greatly increased. 

Again, Kennedy's (1965) dissipation was found to be abnormally small, so that 
this estimate of the sampling rate was somew hat smaller than desirable. Fortu- 
nately, the particle velocity correlations were not strongly affected by this and 
some compensation was possible. 

Roughly speaking, the maximum lag of interest is the Lagrangian time integral 
scale. A crude estimate for this time scale is TL = LE/u', where L, is the Eulerian 
spatial integral scale (roughly the mesh size) and u' is the root-mean-square 
fluctuating velocity. During this time, the particle will travel a distance ULE/u', 
and at  the turbulence level 200 mesh lengths downstream from bhe grid, this gives 
approximately 160 mesh lengths. Thus, observations can be made for times aboub 
the order of the Lagrangian time integral scale. This is a conservative estimate 
because the turbulence level is always higher than it is at x / M  = 200. 

3.6. Photographic system 

It was desired to follow the trajecbories of individual particles in order to avoid 
double differentiation of the dispersion curves. Since Kennedy's (1965) scheme 
was incapable of detecting particles smaller than about 7 0 0 , ~ ~  ten individual 
still cameras spaced along the tunnel were used to photograph the particles. 
Since the flow was isotropic in planes perpendicular to the mean flow in Eulerian 
variables, ib was isotropic in particle variables, e.g. particle position distributions 
in cross sections perpendicular to the stream were expected to be circular. 
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Perpendicular displacements were expected to be uncorrelated with each other 
and to have equal variances, so that all information could be obtained from 
measurements of a single component. Therefore, only the lateral particle dis- 
placements from fiducial marks were measured. 

To minimize parallax errors and obtain a large depth of field, a large object 
distance was required. From the standpoint of lighting, a small object distance 
was required. Thus, there was an obvious conflict in requirements, and a 
compromise had to be made. 

From geometrical considerations, it is easy to show that the worst case would 
result in an 18 yo error in the measurement of the particle position with the 
optical system used. However, on the average, the parallax error is quite small; 
the contribution to parallax error from particles in front of the focal plane is 
nearly balanced by that from those behind the focal plane. Also, since it is not 
the absolute particle displacement, but rather the change in particle displace- 
ment (Ay/At) which is of most interest, the parallax error is a second-order effecb. 

Snyder (1969) showed that for the chosen object distance of 50in., the error 
due to parallax in estimating the autocorrelation of particle velocities was less 

where [v’(t) v’(t’)] is the apparent autocorrelation, and [v(t)  v(t’)] is the true 
autocorrelation. 

4. Apparatus and instrumentation 
4.1. The wind tunnel 

The wind tunnel shown in figure 1 was designed and built specificalIy for use in 
this investigation. Entering air was cleaned with filters which removed 99-97 % 
of 0 . 3 , ~  particles to prevent spurious particles of dust from spoiling the photo- 
graphs. The rating of the blower was 2200cfm at 44in. static pressure. The 
right-angle bend and wide-angle diffuser were necessitated by a limited vertical 
space. The plenum chamber and contraction served to dampen the turbulence 
and provide a flat mean velocity profile in the test section. The test section was 
nominally 16in. x 16in. x 16ft. Three of the walls were slightly divergent and 
the fourth wall was adjustable; this was done so that the core flow could be made 
independent of downstream distance regardless of the boundary-layer growth. 
Two opposite walls contained 8 in. wide glass windows. A third wall was remov- 
able; iti could be fitted with probe mounts for flow measurements or with light 
sources for illumination. A 5 in. section of honeycomb (& in. hexagonal cells) at  
the exit of the test section prevented the flow from prematurely diverging. 

The biplane grid was made from& in. square brass rods spaced on 1 in. centres; 
its solidity was 0.34. It contained a slot to house the particle injection tube and 
electrical leads to the photocell. 

The test section was braced to a vertical wall for support and alignment. The 
mean flow speed was set a t  6-5 metres per second (21.5 fee0 per second). The room 
temperature was maintained a0 approximately 26°C and the humidity at  

4-2 
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approximately 40 yo throughout all measurements. The humidity control was 
necessary because the terminal velocity of the corn pollen was dependent on the 
humidity . 

4.2. Optical and illumintztion systems 
It was originally felt that a large magnification. was required, something like 1 : 1. 
Using the same criteria as Welford (1962) for the acceptable blur of an out-of- 
focus image, it was calculated that the aperture should be something like f / 5 O O ,  
which is clearly ridiculous in terms of available lenses and the tremendous amount 
of light required. When smaller magnifications were tried, success was achieved. 

16 in 
k-4  

Honeycomb 

FIGURE 1. The wind tunnel. 

If all that is desired is the particle position (not resolving the shape of the 
particle), then the demagnification is immaterial, except as it affects resolution; 
that is, the spob size remains constant while the field size is reduced. The accuracy 
with which the particle may be located is progressively reduced. This accuracy is, 
in any event, much greater than the accuracy of other elements in the system. 

With the small magnifications, it  was possible to use 35 mm film. The camera 
bodies were Robot Star 11/50, which contained spring motors for taking 
50 one-inch square frames before being rewound. The cameras contained 
solenoids for remote shutter control. The lenses were Schneider ‘ Componon’ with 
focal lengths of 105 mm and largest apertures of fl5.6. The system demagnifica- 
tion was approximately 11 : 1. 
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The film used was 35 mm, 2479 RAR, a Kodak instrumentation film with an 
ASA speed of 400. Faster films were available, but they were much more grainy 
(the granularity is important when considering the accuracy with which the 
centre of the particle image may be located). 

The optical and lighting arrangement is shown in figure 2. The light; source was 
placed far from the field of view so thab the windows were not directly illuminated. 
Thus, foreign matter on the windows lessened the amount of light reflected by the 
particles onto the film, but did not obscure the particle images. The xenon flash- 
tubes were 3in. in length, type FX-38A-3, from E.G. & G., Inc. The energy 
storage was 200 J and the flash duration was about 300ps. The characteristic fast; 

Test section of wind tunnel 
/ 

Camera 

FICI~JRE 2. Optical and illumination systems. 

rise and slow decay of the light output from the flashtubes proved bo be extremely 
advantageous; as a result of this, images of moving particles were easy to detect 
amid the background noise because of their characterist;ic comet shape. 
Skationary particles such as dust on the windows were round in addition to being 
out of focus. Also, imperfections in the film emulsion were not, generally speabg ,  
of comet shape. 

Sharp and clear fiducial marks from which to measure particle positions were 
reflected through mirrors into the cameras. In  figure 2, board A contained the 
fiducial marks, and board B held the mirrors. Counter numbers, iden~ifying the 
camera, the particle type, and the trajectory were reflected into the cameras in 
the same manner. 

4.3. Film reading 

The particle positions (distances from fiducial marks) were measured by Glenn 
Engineering Services, Inc., on a Benson Lehner Oscillograph Analyzer and 
Reader (OSCAR). The OSCAR is able to resolve the field into about 6000 parts 
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(in each direction), so that, providing the centre of the particle image can be 
located precisely, the absolute accuracy is about 0.001 in. (the field size was 8 in.). 
An independent set of measurements showed that the root-mean-square devia- 
tion from the mean was Oa0034in. Snyder (1969) showed that this error was 
insignificant in calculating the autocorrelations (less than 0.35 yo). 

To calibrate the system, a thread was strung along the centreline of the wind 
tunnel and the thread and a scale were photographed against the background of 
the fiducial marks at each camera station. Appropriate measurements were made 
to enable conversion from OSCAR units to physical dimensions in the wind 
tunnel. 

In  order to account for changes in magnification in any of the cameras or in 
the OSCAR, the distance between the two fiducial marks was measured on the 
first frame of each filmstrip. This was the filmstrip calibration, since the distance 
between fiducial marks and the centreline of the wind tunnel had previously been 
determined. After calibration, the distance between the particle and one fiducial 
mark was measured for each frame of the skip, camera and trajectory numbers 
being recorded simultaneously. 

Occasionally, and for various reasons, a particle image could not be found on 
the 61m in one of the ten cameras. If the particle was missing in the first or last 
camera, or in more than one camera, the entire trajectory was discarded. If 
otherwise, the missing particle position was replaced by the arithmetic mean of 
its positions in the two adjacent cameras. Snyder (1969) made a full analysis of 
the influence of this replacemene on the statistics. In  general, the error in deter- 
mining $he mean-square particle velocity was much less than 1 %; the worst case 
resulted in a 4.7 yo error. The relative error in determining the autocorrelation 
for moderate and large Separations was less than 4%, which is less than the 
accuracy obtainable because of the finite number of partiicles. The absolute error 
goes to zero for large separations. 

4.4. Particle injector und detector 

The particle injector used for the corn pollen, solid glass beads, and copper beads 
is shown in figure 3. Filtered dry air was fed to the system through a pressure 
regulator and flowed through a fine-mesh screen (to contain the beads) into 
a narrow angle expansion, from which it exited to the room through paper filters, 
Particles were introduced into the expansion and the flow rate was adjusted so 
that &he beads were kept in suspension. They were then entrained by the air flow 
through the sampling tube in the side of the expansion and carried to the centre 
of the tunnel. Valves A and B were adjusted simultaneously to maintain the 
beads in suspension and to control the pressure inside the expansion (hence to 
control the air flow rate in the sampling tube). The particle concentration was 
adjusted to maintain a particle flow rate through the sampling tube of about 
one bead per second. In  order to keep the beads in suspension, it was necessary 
to vibrate the injec6or; hence, the concentration was controlled mainly by the 
rate of vibration. 

This injector worked quite well for the heavier particles, which left the walls 
of the diffuser as single beads. The hollow glass beads, being much smaller and 
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lighter, had a much greater tendency to agglomerate. A similar type injector was 
constructed for these; here, the 464p hollow glass beads were placed in a 48p 
micro-mesh sieve, so that they had to pass through the sieve as singles before 
being entrained by the air flow entering the sampling tube. 

The sampling tube was run through the centre bar of the grid to the centre of 
the tunnel; it was not seen by the flow. There, it made a rather sharp 90" bend and 
continued downstream twenty inches through a $$in. diameter tube which also 
housed the leads to a photocell. The particles were ejected at the wind tunnel 
centreline 20 mesh lengths from the grid with a mean velocity the same as the 
tunnel speed. Hot-wire probes were unable to detect any effect from the sampling 
tube on the mean velocity or the turbulence intensity beyond x /M = 41 (the 
first camera was stationed at  x / M  = 68). 

Screen 

Valve A 

FIGURE 3. Heavy particle injector. 

Since the time of entrance of the particles into the tunnel was random, a 
detector was required. This consisted of a laser beam directed across the end of 
the sampling tube and a tiny photocell; the particles exiting from the sampling 
tube crossed the laser beam and reflected light into the photocell, which produced 
an electrical pulse a t  the instant the particle entered the tunnel. The photocell 
was a Hoffman EA7-El (&in. diameter). 

A 4 mW, helium-neon laser was necessary for detecting the smallest beads; 
a 1 mW one was sufficient for the larger beads. An amplifier with a gain of 10 000 
was constructed fromPhilbrick operational amplifiers to match the photocellwith 
the timing system. 
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4.6. T i m i n g  system 

A typical run (i.e. taking 10 picbures of one particle as it travelled through the 
test section of the tunnel) proceeded as follows. All lights in the enclosure were 
off. A particle entered the tunnel and triggered the timing system. The timing 
system indexed a set of counters (frame identification numbers) by one count, 
opened the camera shutters (all ten at  once), turned on the lights illuminating 
fiducial marks and counter numbers, triggered the ten flashes in sequence as the 
particle entered the field of view of the respective camera, and, after the tenth 
flash fired, closed the camera shutters. 

Because all ten pictures of a particle had to be taken within + see, because a 
large number of trajectories were involved, and because it had to perform several 
varied tasks, the timing system had to be accurate, reliable, and versatile. For 
these reasons, a digital system consisting of plug-in microcircuits (p-PACS) from 
Honeywell, Inc. was used. The timing system utilized a crystal oscillator clock, 
binary counters, NAND gates, and lamp drivers to trigger the flash tubes, control 
the camera shutters, and index the counters. The accuracy of the timing of the 
flashes was better than t 1 msec (4 in. of particle travel). 

4.6. Other equipment 

All of the Eulerian turbulence data measured in this work were obbained with 
a constant-temperature hot-wire anemometer designed by Wyngaard & Lumley 
(1967). This particular anemometer was designed for a flat response to 2kHz, 
which corresponds to KT = 0-8 at x/M = 66, where K is the wave-number and 
7 is bhe Kolmogoroff microscale. Hence, the output contained all the significant 
high frequency information about the flow. The hok wire was tungsten, flash- 
plated with platinum, had a diameter of 0-0003 em, a length of 0.06 em, and was 
operated at an overheat ratio of 0.8. lw/d was 200 and lw/r was 1-5 at x/M = 66, 
where Zw is the wire length and d is the wire diameter. The length to diameter ratio 
was somewhat less than desirable (Champagne et aZ. 1967). Since the only way to 
increase this ratio without limiting the spatial resolution was by lowering d,  and 
since smaller diame6er wires are exceedingly dificult to work with, it was decided 
to accept this ratio and make the corrections suggested by Champagne et al. Con- 
cerning the spatial resolution, Wyngaard (1968) has shown thak the measured 
spectrum does not deviate significanbly from the true spectrum for KZ, < 1, 
provided 1,111 < 3. In  this flow, it was unnecessary to take measurements at  
frequencies corresponding to values of dW larger than one, so that it may be 
assumed the measured spectra do not deviake significantly from the true spectra. 

An adder-subtracter circuit was constructed from Philbrick solid state 
operational amplifiers for use with the two channel anemometer (x-array). It had 
a flab response to 5 kHz. 

Spectral analysiswasdone with a Hewlett Packard 302Awave analyzer. Turbu- 
lent signals were squared with a Ballentine 320A voltmeter. All averages were 
obtained from an integrator using a Philbrick SP 656 chopper-stabilized opera- 
tional amplifier. Half-minute integration times were generally found to be suffi- 
cient. A Hewlett Packard 3440 A digital voltmeter was used to read d.c. voltages. 



Particle velocity autocorrelation functions 57 

5. Presentation and discussion of results 
5.1. Eulerian turbulence data 

The flow measurements in this work were made for two reasons: first, to ‘proof) 
the tunnel so that particle dispersion measurements could be started, and second, 
to describe the necessary characteristics of the turbulence in order to provide 
a basis of comparison with the characteristics of the particle motion. 

Mean velocities weremeasured with a Pitot tube and Meriam micromanometer, 
accurate to 0-001 in. of water. The mean velocity profiles were flat, varying less 
than 1 % over the core (approximahely an 8 in. square area). The wallwas adjusted 
so that the mean velocity in the core was the same at all distances from the grid. 

FIGURE 4. Comparison of turbulent energy decay. D, Kennedy ; ---, Batchelor & Townsend 
(round bars); A ,  present-data; A, Corrsin (round bars); --- , Baines & Peterson 
( r ~  = 0.44); 0, Corrsin; --.., Comte-Bellot & Corrsin. All data for square bars and 
F = 0.34, unless otherwise noted. 

The following measurements were made with a single hot wire, stretched 
perpendicularly to the mean flow. 

The turbulence was found to be homogeneous in planes parallel to the grid. 
Even close to the grid, the intensity profiles were nearly flat, varying by about 
10 yo over a 9 in. core. This small variation was undoubtedly due to the ampli- 
fying effect of the turbulence on the small imperfections or inhomogeneities in 
the grid and is in reasonable agreemenb with measurements made by Granb & 
Nisbeh (1957). The profiles were more nearly flat with increasing streamwise 
distance, but the size of the core decreased because of the growing turbulent 
boundary layer. Even at  the farthest downstream distance, however, the core 
size was well over 7in., which was adequate for the particle measurements. 

The following group of measurements was made with cross-wire probes. The 
measurements of the decay of the turbulent energy in the streamwise direction 
are compared with the results of other investigators in figure 4. The data of 
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Batchelor & Townsend (1948) are for a square mesh, round bar grid; it is well 
known that square bar grids generate a higher turbulence intensity than do 
round bar grids of the same solidity (Corrsin 1963b). The present data can thus 
be expected to be lower than the data of Batchelor & Townsend, since it is the 
inverse of the turbulent energy which is being compared. The data of Baines & 
Peterson (1951) were for a higher solidity mesh, but compare favourably with the 
present measurements. Corrsin’s (1963b) result for the round bar grid is, as 
expected, higher than the present data, and his result for the square bar grid 
compares favourably with the present data. Comte-Bellot & Corrsin’s (1 966) 
data compare reasonably well. The onIy data that do not compare favourably 
are Kennedy’s (1965), whose external flow conditions are nearly identical to 
those of the present experiment. 

It was originally intended to match the flow conditions of Kennedy, but in 
view of the above discussion, tihis intention was discarded, and measurements 
of particle dispersion in a more ‘standard’ flow were made. The discrepancy is 
unfortunate because the present experiment was designed using Kennedy’s data 
to estimate particle to fluid length- and time-scale ratios and the sampling ratie. 
Since Kennedy’s turbulent energy was much smaller than thak measured here, 
the estimated dissipation was too small; hence, the estimated sampling rate was 
too small, the estimated fluid length scales were too large, and the estimated fluid 
time scales were too large. Some compensation for the low sampling rate was 
possible and will be discussed later. However, it was hoped to have one particle 
type which would follow the flow perfectly, and hence to obtain pure Lagrangian 
data. In  the present flow, this was found impossible. 

Figure 5 shows the energy decay curves (along centreline of test section). As 
mentioned previously, corrections were made t o  account for the finitme wire length, 
as suggested by Champagne & Sleicher - (1967). They showed that, for the parti- 
cular wires used here &rue = 1*17v&easured, and this correction was used through- 
out. As shown in the figure, the energy of the longitudinal velocity component is 
nearly equal to that of the lateral component, indicating that the flow is nearly 
isotropic. Because of the disagreemenk with the Kennedy’s data, a Thermo- 
Systems constant-temperature anemometer and a single wire perpendicular to 
the flow were used at this point as a check on the present data. The data obtained 
in this manner agree excellently with the cross-wire data and are also plotted in 
figure 5. The energy decay curves are adequa,tjely represented by 

and 

The normalization of the spectra was accomplished through the following 

- convention: 
v2 = Iom.?$(x) d K ,  (11) 

where F, is the energy spectrum function of the lateral velocity component. The 
spectral data were checked by comparing the dissipation calculated from the 
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spectra with that calculated from. the energy decay relationship. For isotropic 
turbulence, this relation is 

- - - -  
where U(d/dx)  has been substituted for d/dt, q2 = u2 + v2 + w2, E is the dissipation, 
v is the kinematic viscosity, and Fl is the energy spectrum function of the stream- 
wise componenh w2 was taken equal to v2. Measurements not presented here 
showed this to be the case. Reasonably good agreement was found between the 

"IN 
FIGURE 5. Decay of turbulent energy, A, U2/u"x 0, ga/>x 0 ,  single wire 

check with Thermo-Systems anemometer. 

dissipations calculated via the two methods. For example, at x / M  = 171, the 
dissipation calculated from the spectra was 170 cm2/sec3; from the energy decay, 
it was 165cm2/sec3. The spectral energy data are plotted in Kolmogoroff 
co-ordinates in figure 6, where Po = (sv6)*, K = 2nf/U, and 7 = (v3/e)*, where 
e was calculated using (10). 

As expected, all of the spectra collapse (with the understandable exception at 
x / M  = 41), when plotted in Kolmogoroff co-ordinates. This shows that the energy 
spectra are self-preserving, which is one prerequisite for applying the decay 
corrections. The second prerequisite, that the energy be inversely proportional to 
the distance from the virtual origin, is shown to be satisfied in figure 5. The third 
prerequisite, that the characteristic length scale be proportional to  the square 
root of the distance from the virtual origin, is a consequence of the first pre- 
requisite, the assumption of isotropy, and the definition of A, the Taylor micro- 
scale, as the characteristic length scale, 
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where f is the longitudinal correlation function, and r is the separation. 
von KArmAn & Howarth (1938) have shown that, for the decay of turbulence 
behind a grid, this assumption and definition lead to 

UdzL2/dX = - 10vG/A2. 
Since 2 = A ( x -  xo)-I, then 
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FIGURE 6. Lateral energy spectra. z /M = : a, 41; ., 66; A, 73; 
0,  106; 0, 138; A, 171. 

Table 2 lists various flow parameters. The Taylor microscale was computed 
from (15). The integral scales were computed from 

The dissipation was calculated using (9), (1 0) and (1 2). 

correlation was obCained by numerically integrating the equation 
A typical lateral Eulerian spatial correlation, g(r),  is shown in figure 7.  This 

v2g(r) = r22(r, 0,O) = 
- 

(17) 

where rZ2 (r, 0,O) is the lateral spatial velocity correlation with separation in tthe 
streamwise direction. 
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r (em) 

FIGURE 7. Eulerian lateral spatial correlation at z/H = 73. 

41 
3.1 
3.0 
5430 
0-029 
0.39 
5.3 
2.8 

64 73 
2.2 2.0 
2.2 2.0 
1610 1160 
0-039 0.043 
0.54 0.59 
9.8 11.6 
3.0 3.1 

107 138 171 
1.6 1 74 1.2 
1-6 1.4 1.3 
480 266 165 
0-053 0.061 0.069 
0.74 0.86 0.97 
18.0 24.2 30.6 
3.7 4-2 4.6 

t U = 6-55mlsec. 

TABLE 2. Eulerian turbulence data 

5.2. Particle data 

Particle pictures were taken at  ten stations, spaced logarithmically (from the 
virtual origin of decay) from x / M  = 68.4 to 168. 

Data analysis. The particle positions were recorded directly on IBM cards by 
the OSCAR. Appropriate data manipulations were done on an IBM 360167 
computer. 

It was indubitable that the OSCAR operator would occasionally measure 
a spot on the a m  which was not a particle image. In  order to guard against this, 
i t  was necessary to test each trajectory for flukes. This was done by testing to see 
if the difference between particle displacements in two adjacent cameras was 
within a specified discrimination level. If not, the trajectory was discarded. The 
question of what discrimination level should be used was critical. One would like 
to find a wide range of discrimination levels over which the total number of 
trajectories accepted would be unchanged. This was found to be nearly the case 
for the corn pollen data, the first to be analyzed. The lowest discrimination level, 
then, was the one used for the remaining data. For the hollow glass beads, how- 
ever, it was necessary to increase the level slightly because its dispersion was 
much greater. 
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The discrimination levels, the total number of particle trajectories used in the 
calculation of the statistics of the particle motion, and the likely relative error in 
determining the correlations when the true correlation has a value of 0-1 are 
shown in table 3 for each particle type. 

Disc. level Number of Error 
Particle type (in.) trajectories (yo) 

Glass beads 0.60 736 13.7 
Copper beads 0.60 659 15.3 
Hollow glass beads 0.65 651 15.5 

TABLE 3. Discrimination level, number of trajectories, and likely relative 
error in autocorrelation 

Corn pollen 0.60 846 11.9 

As this work was originally conceived, a Fourier series was to be fitted to each 
of the parbicle trajectories and each series was to be differentiated to obtain 
particle velocities. The behaviour of Fourier series is ideal in the sense that bhe 
derivative series contains no higher frequencies than does the original series. 
Hence, the conventional high frequency noise introduced by differentiation is 
nob present with this type of curve fit. However, all attempts to fit Fourier series 
to this data resulted in failure. The reason is because the sampling rate was some- 
what lower than desirable; aliasing (Lumley & Panofsky 1964) resulted because 
the highest frequency particle motions were not contained in the data. However, 
aliasing affects the spectrum only; it does not affecb the autocorrelation. 

The only recourse was to calculate parbicle velocities as the quotient of dis- 
placemenb divided by time between cameras. The velocity determined in this 
manner is, of course, the average velocity between the two cameras, so that this 
method results in some smoothing which reduces the root-mean-square velocity. 
The autocorrelation computed in this manner represents the true value a t  the 
points t,, t,, . . . , t,, of the autocorrelation of the smoothed signal. 

where the tilde indicates smoothing, v is the particle velocity, y is its displace- 
ment, and A denotes the time separation between cameras (ignoring the fact that 
the intervals are not the same and that the velocity is no6 stationary). 

Evidently, some of the high frequency content of the signal was removed. It 
was replaced in the following manner. The Fourier transform of the smoothed 
signal is - 

h sin (+(dA) 
a(@) = a ( w )  

+oh ' 

where the hat signifies the transform and w is the frequency measured in radians 
per second. The spectral transfer (filter) function is given by 
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which is plotted in figure 8. In  the figure, f is measured in Hz. Ideally, the filter 
function would be unity from zero to the Nyquist frequency, then drop to zero 
very rapidly thereafter. The filter function used here yields the exact value at 
isolated points of the true autocorrelation of the smoothed velocities, i.e. &he 
velocities seen through this filter. It is impossible to regain any information 
beyond 1, and probably not much beyond 4; on the obher hand, the values 
below Q may be substantially improved. 

f A  
FIGURE 8. Filter functions. A ,  no compensation ; B, slight over-compensation. 

The smoothed second derivative of the true velocity is defined as follows 

v""(t)A' E (v"'(t+gA)-v"'(t-&A))A = E'(t+A)-2v"(t)+E'(t-A). (21) 

The smoothed first derivative may be written as 

E'(t++A)A = v"(t+A)-G(t) = sf'" 
Making the substitution 7 = t + E +  +A, this equation becomes 
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With these definitions, it  is not difficult to show that 
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Notice that equation (24) is not an approximation, but an exact formula. 
v""(t)A2 is merely a convenient notation for the second differences in particle 
displacements. 

The Fourier transform of (24) is 

A sin +uA 
fi"(0) = -4 ( ~ ~ w h  ) v"(w) sin2 +uA. 

Thus taking v" - v""A2/12 for the velocity is equivalent to having the filter function 

r*)'( 1 + + sin2 ~ U A ) ~ .  

This filter function is also shown in figure 8. It is much closer to the ideal filter 
than is the original. It overshoots about lo '%,  which is acceptable because it 
reconstitutes virtually everything below +. This overcompensation scheme, then, 
was used throughout in estimating particle velocities. Obviously, the smoothed 
second derivative of the velocity could not be calculated between the first two 
or last two cameras, but it was calculated elsewhere. 

The following analysis is done in order to obtain an idea of the effect of the low 
sampling rate. Halfway between cameras one and two, the Nyquist frequency is 
about 92 Hz, the highest frequency with non-negligible energy in the turbulence 
is thus 46 Hz. This corresponds roughly to the peak of the dissipation spectrum. 
The spacing between the first two cameras is about 28msec, giving f A  = 1.3. 
From figure 8, it is seen that any particle motion at this frequency is lost. How- 
ever, at  this point, the spectrum of the turbulence is very far down. The location 
of the half-power point of the Lagrangian spectrum may be crudely estimated to 
be at  fhA = 0.082, from the model of the Eulerian time spectrum discussed in 9 3.5. 
From figure 8, it is seen that anything below JfA = 0.5 is reconstituted. Since the 
location of the half-power point of the forcing function (the turbulence) is esti- 
mated to be a factor of six lower than the filter cut-off point, the sampling rate 
can be viewed more optimistically. In  addition, the heavy particle time constants 
are around 50 msec; they have a half-power €requency (in an oscillating Stokes 
flow) of fA = 0.09, showing that the heavy particles probably contained 
negligible energy at frequencies higher than were measured. 

Results. The probability densities of the pasticle positions and velocities were 
Gaussian, within the limits of experimental scatter. For large times, this is a 
likely consequence of the random nature of the turbulence. For small times, this 
is a consequence of the fact that the probability density of the fluid velocity is 
Gaussian. 

Figure 9 shows the particle dispersion curves. As expected, the lighter the 
particle, the larger is the dispersion. It is to be noted, however, that the hollow 
glass bead curve has significant curvature whereas the copper bead curve is 
nearly linear for large times. Thus, it is immediately obvious that the integral 
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scales for the lighter particle autocorrelations are larger than those €or the 
heavier particles. The dispersions for the glass and copper beads (same time 
constant) are nearly identical. 

The particle velocity decay is compared with the turbulent velocity decay in 
figure 10. The decay is linear and the virtual origins are the same for the turbu- 
lence and all the particles. The fact that the end-points for the particle decay are 

I I I 

Time from station one (msec) 

FIGURE 9. Particle dispersion. 0, hollow glass; A, corn pollen; 0,  glass; A, copper. 

-300 -200 -100 0 100 200 300 400 500 
Time from station one (msec) 

FIQURE 10. Particle velocity decay. 0, hollow glass; a, corn pollen; 
0,  glass; A, copper; 0, turbulence. 

consistently high with respect to the least-squares linear curve is most likely 
a consequence of the inability to apply the compensation there. The difference 
between the velocity of the glass and copper beads is somewhat surprising since 
their time constants were nearly the same and their dispersion curves were nearly 
identical. The tread, however, is consistent. The time constant of the copper 

FLM 48 5 
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beads is slightly larger than that of the glass beads, the velocity is lower, and the 
dispersion is slightly smaller. It is also seen tha t  the smallest and lightest beads 
(hollow glass) still do not follow the flow perfectly; if they did their velocities 
would match that of the turbulence. The difference between the velocities of bhe 
glass (or copper) and corn pollen is larger than expected in view of the fact that 
their time constants differ by only a factor of 23. The difference between the 
velocities of the corn pollen and hollow glass beads is surprisingly small when 
compared, say, with the difference between the velocities of the hollow glass and 
turbulence, since their time constants differ by a factor of 12. It is likely that 
a significant portion of +he energy of the hollow glass beads was lost due to the 
low sampling rate. It is easy to show from the oscillating Stokes flow problem 
that the hollow glass beads would follow even the highest frequency fluctuations 
of the turbulence. Assuming this to be the case and reasoning from the rather 
crude model of the Lagrangian spectrum, it is not difficult to show that perhaps 
as much as 40 yo of the energy of the hollow glass beads could have been lost due 
to the low sampling rate. If this were the case, the velocity of the hollow glass 
beads would match that of the turbulence. These estimates are rather speculative 
because the form of the Lagrangian spectrum is unknown. 

Another aspect which deserves commen6 is t;he fact that the overcompensation 
scheme appeared to add about the same percentage of energy to all the spectra of 
particle energies. This was unexpected. One would expect; that, if the particles 
contained negligible energy at  frequencies near the cut-off point, the compensa- 
tion would add negligible energy, whereas, if they contained significant energy, 
then the compensation would add significant energy. Since it was reasoned 
previously that the heavy particles would contain negligible energy at  the cut-off 
point, it was expected that the compensation would add negligible energy. 
Perhaps the explanation is that the noise from the measurement errors was much 
more significant for the heavier particles. The lower the velocity, the more signifi- 
cant is the measurement error. Also, the measurement error makes its most 
significant contribution at the highest frequency. It is likely then, that the total 
of the two effects resulted in the compensation adding nearly the same percentage 
of energy to the spectra. 

Although it is not correct to ascribe all of the difference between the particle 
and turbulence velocities to the inertia effect;, it is intuitive that the particle 
inertia is the major cause of the difference. As discussed above, it is not certain 
that the hollow glass beads have a significant inertia effect, in spite of the 
measurements shown. 

Figure 11 shows the decay-corrected autocorrelation functions for the four 
particle types. It is seen that the solid glass and copper beads have nearly 
identical autocorrelations; they have nearly the same time constant, but differ 
by a factor of two in diameter. As expected, the diameter variation plays an 
insignificant role in this range of length-scale ratios. In  comparing all four curves, 
it  is seen that, in marked contrast with Kennedy’s (1965) data, the heavy particle 
correlations decrease much more rapidly than do those for the lighter particles. 
Kennedy obviously did not realize the significance of the crossing-trajectories 
effect. He stated “one would certainly expect the solid particle correlation to 
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remain higher than the fluid particle for all times, simply because of the inertia 
of the particle”. In  fact, when he found that the heat wake data showed the 
opposite effect, he attempted to correct for ‘ additional molecular diffusion’. 
When one carefully studies Kennedy’s figures, it is very understandable that 
preconceived ideas of expected behaviour could have influenced the way in 
which the dispersion curves were drawn and the double-differentiation process. 
Even a very slight amount of scatter in the dispersion curve can strongly influence 
the second derivative. The present method, of course, avoided the double- 
differentiation process. 

Although it is not correct to ascribe all of the differences between the cor- 
relations to the crossing-trajectories effect, it is intuitive that this effect is the 
major cause of the difference. The inertia effecC would cause an opposite trend. 

-0.2 I I I I I 
I I I I I I 

0 25 50 75 100 125 150 175 200 225 250 
5, corrected msec 

FIamE 11. Particle velocity autocorrelations. 0, hollow glass; A, corn pollen; 
0,  glass ; A, copper. Bars indicate root-mean-square deviation. 

As an overall check on the correlations, decay-corrections, compensation 
scheme, and parbicle energy data, the correlations and energy decay were fitted 
with the faired curves shown and a double integration was performed to predict 
the particle dispersions. Figure 12 shows two examples in which the dispersion 
predicted by this method is compared with the actual measured dispersion. The 
agreement is regarded as excellent. 

In  figure 13, the particle velocity and lateral Eulerian correlations are plotted 
with the abscissa non-dimensionalized by the respective integral scales. The 
similarity in shape is striking; it is safe to say that within the limits of experi- 
mental error, the particle velocity autocorrelations are similar in shape to the 
Eulerian spatial autocorrelation. This was the prediction of Yudine’s (1959) and 
Csanady’s (1967) theories for heavy particles. It has also been suggested by 
several authors (see Pasquill 1962, p. 97) that Lagrangian and Eulerian cor- 
relations are identical in shape but differ only in time scale, i.e. p&) = pE(b(), 
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where /3 = TL/TE. Pasquill (1 962) suggests a value of p = 4 based on experiments 
by Hay & Pasquill (1957). Figure 13 shows that the parhicle correlations are 
similar in shape to the Eulerian correlation measured at a fixed point. In  this 
work, if the heavy particle correlations are interpreted as representative Eulerian 
correlations and light particle correlations as Lagrangian correlations, thenp = 3. 
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There is no theoretical reason to expect the correlations shown in figure 13 to 
be of the same shape. In  fact, dimensional reasoning suggests that the Eulerian 
spatial correlation cannot have the same shape as the Lagrangian time correlation. 
Kolmogoroff's theory shows 6hat F(K) = a ,d~-% and that S ( w )  = a , s ~ - ~ ,  so that 
the spectra, and hence the correlations, cannot have the same shape. Experi- 
mentally, it is difficult to measure a difference between the two, as evidenced by 



Particle velocity autocorrelation functions 69 

figure 13. From a practical viewpoint, however, this is a fortunate coincidence. 
The exact shape of the correlation is unimportant; what is most important are 
the Lagrangian, Eulerian, and particle velocity time integral scales. 

Figure 14 shows a graph of particle integral scale versus particle time constant. 
Although it is difficult to draw firm conclusions, it appears that the curve may 
be asymptotic to TL = 100 msec as Tp goes to zero. This is, of course, an estimate 
of the Lagrangian integral scale. At the opposite extreme, the integral scale must 
go to zero as the particle time constant goes to idni ty .  In  this case, the particle 
sees a 'frozen' field as it rapidly cuts through the turbulence, and its motion is 
more adequately described in terms of the Eulerian spatial correlation. 

1 2 3 4 5 6 1 8 9 1 0  20 30 40 50 70 100 
Particle time constant (msec) 

FIGURE 14. Variation of integral scale with part,icle time constant. 0, hollow glass; 
A. corn pollen; 0, glass; A, copper. 

Corrsin (1963~) estimated the Lagrangian integral scale to be L/u', where L is 
the Eulerian spatial integral scale and u' is the root-mean-square turbulence 
intensity. The lateral integral scale was found to be about 1.2 cm and the turbu- 
lence intensity was 13cm/sec at x /M = 73. Hence, this experiment shows 
Corrsin's estimate to be very close to the true value. 

6. Conclusions 
Criteria were developed for determining the type of flow, the sampling rate, 

bhe number of observations, and the correction accounting for the turbulence 
decay, which were necessary for making adequate measurements of the auto- 
correlations. Various sources of error were analyzed; the parallax error was 
negligible, the particle size variation was unimportanb, the film reading errors 
were negligible, the effect of the replacement of missing pictures was small, and 
the relative error accompanying the estimate of the autocorrelation from a finite 
number of measurements was unavoidable. 

The wind tunnel generated a homogeneous and isotropic turbulent flow. 
A method for photographing the small particles was developed. A particle 
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injector was constructed to launch single paxticles into the flow at the mean 
flow speed. A detector determined when a particle had entered the tunnel and 
a timing system triggered the flashtubes in sequence as the particle entered the 
field of view of the respective camera. Padicle positions were recorded on film; 
the particle positions were measured and analyzed to determine the autocor- 
relation functions. The Eulerian properties of the turbulence were measured. The 
conclusions are: (a )  The turbulence field is homogeneous in planes perpendicular 
to the mean flow. ( b )  The energy decay corrections can be made because the flow 
is self-preserving. (c )  The probability densities of particle positions are Gaussian. 
( d )  The probability densities of particle velocities are Gaussian. ( e )  Within the 
limits of experimental error, the particle and turbulent velocity decay have the 
same virtual origin. (f) The autocorrelations decrease faster for heavier particles, 
in marked contrast with previous experimental results. (9)  All of the particles 
with the possible exception of the hollow glass beads have significant inertia 
effects. (h) All of the particles with the possible exception of the hollow glass beads 
have significant crossing-trajectories effect. (i) Within the limits of experimental 
scatter, all of the particle velocity autocorrelations and the Eulerian spatial 
correlation have similar shapes. (j) A crude estimate showed the ratio of 
Eulerian to Lagrangian time scales to be 3. ( k )  The Lagrangian integral scale is 
closely approximated by Llu'. 
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